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Animals have evolved a bewildering diversity of mechan-

isms to determine the two sexes. Studies of sex deter-

mination genes – their history and function – in non-

model insects and Drosophila have allowed us to begin

to understand the generation of sex determination diver-

sity. One common theme from these studies is that

evolved mechanisms produce activities in either males

or females to control a shared gene switch that regulates

sexual development. Only a few small-scale changes in

existing and duplicated genes are sufficient to generate

large differences in sex determination systems. This

review summarises recent findings in insects, surveys

evidence of how and why sex determination mechan-

isms can change rapidly and suggests fruitful areas of

future research.
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Introduction

The regulation and evolution of sexual development have long
been of central interest in developmental and evolutionary
biology. One key question has been how sexual fate is deter-
mined and regulated, giving rise to the sexually dimorphic
traits that play such a dominant role in animal evolution

and behaviour. Much has been learned about how sex deter-
mination is realised and is integrated into the developmental
program from model systems; the insect Drosophila mela-
nogaster, the nematode Caenorhabditis elegans and the mouse
Mus musculus [1–4]. These studies have not resolved the
question of why the regulatory principles of sex determination
are so bewilderingly different and how this diversity is gener-
ated molecularly.

Sex determination mechanisms can vary substantially
between phylogenetically closely-related species [5–7] and
even within a single species [8–10]. The same mechanism
can apparently be regulated by different genes [11, 12]. This
implies that these mechanisms evolve very rapidly, despite the
antiquity of the two sexes.

Here, we review recent advances made in insects that have
begun to uncover how diverse sex determination systems are
generated and regulated [12–22]. The evolutionary and mol-
ecular routes taken broaden our understanding of how and
why novel regulatory controls of a developmental process
evolve. The key questions we address in this paper are:
(i) How are differences in sex determination molecularly real-
ized; (ii) how did differences in sex determination evolve from
a pre-existing genetic repertoire; (iii) what forces drive sex
determination systems to diverge?

Since the first reports of a sex determination mechanism
[23] and of the inherited basis of sex determination [24, 25] –
both made in insects – an astonishing diversity of mechanisms
has been uncovered in a variety of species and phylogenetic
lineages [5, 7, 26, 27]. Considering insects, classical genetic
and cytological studies have identified a variety of genetic and
environmental signals that determine the two sexes. In the
fruit fly D. melanogaster, for instance, the double dose of
X chromosomes [28] determines femaleness, a single dose
maleness. Other dipteran insects (e.g. Musca domestica and
Ceratitis capitata) employ a male-determining Y chromosome:
females are XX and males are XY [13, 29]. Butterflies present
the opposite scenario, possessing a female-determining W
chromosome: females are ZW and males are ZZ [7]. In XY
chromosomal systems the number of Y chromosomes can
vary substantially [30]; for instance in some species of the
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fruit fly Anastrepha, females are XX/XX and males XX/Y [26].
Other species employ male and female determiners with no
visible chromosomal differences (e.g. phorid fly Megaselia
scalaris [10], Chironomus [9, 31]). Male scale insects and white
flies (both homopterans), thrips (thysanopterans) and hyme-
nopteran insects (wasps, ants and bees) are haploid and
females are diploid [7]. The genetic basis of haplo/diploidy
in several hymenopteran species is complementary sex deter-
mination; males are homo- or hemizygous and females het-
erozygous at a single locus [32, 33]. In another hymenopteran
species, the parasitic wasp Nasonia vitripennis, sex determi-
nation is consistent with a maternal imprinting mechanism
[22]. Differential elimination of sex chromosomes during the
first stages of embryonic division is used as a sex determi-
nation mechanism in the fungus gnat Sciara [26]. Females
develop when one paternal X chromosome is lost from the
3X:2A zygote and males arise when two paternal X chromo-
somes are lost. Maternally-derived signals (e.g. the blowfly
Chrysomya rufifacies) or environmentally-derived signals,
such as the temperature of egg incubation (e.g. the gall midge
Heteropeza and the fungus gnat Sciara), are also utilised as
sex determination signals.

Here, we wish to limit our review to sex determination
signals of the pathways that have been identified in insects.
From the phylogenetic relationships of hymenopteran insects,
at the base of the holometabolous insect branch (Fig. 1F), we
can retrace the ancestral components that were shared by
common ancestors and then explore which components
evolved and established new sex determination systems.

In the next section, we summarise the different ways in
which sex determination is achieved molecularly to regulate
the proportions of males and females. We then turn to the
question of how novel sex determination systems can evolve
from the ancestral genetic repertoire, before discussing the
forces that drive divergence in sex determination. Finally, we
highlight potentially fruitful directions for future research.

Regulatory diversity and common
principles of sex determination

Sex determination systems use different genes and regulatory
mechanisms to establish activities in either males or females
(Fig. 1). These activities regulate tra genes, which are key,
upstream components of an ancestral sex-determining path-
way [12–15, 17, 20–22].

In D. melanogaster, the double dose of X chromosomes [28]
establishes feminising activity (Fig. 1E). The X chromosome
encodes several transcription factors (e.g. runt, sisA, sisB) that,
through the double dose in females, activate the Sxl gene. Sxl
proteins in females are splicing factors that splice tra mRNAs
in females to produce Tra protein. A single X chromosome
results in the absence of the Sxl protein and, as a consequence,
male tra mRNAs with a premature stop codon are produced.

In the honeybee Apis mellifera, heterozygosity of the comp-
lementary sex determiner gene (csd) establishes feminising
activity [33, 34] (Fig. 1A). Csd allelic proteins derived from
heterozygous csd activate the feminizer gene (fem) by directing
splicing to form the female fem mRNAs that encode the
Fem protein. Proteins derived from hemizygous (haploid,

unfertilised eggs) or homozygous csd genes are non-active.
As a result, the fem mRNAs are spliced into the male configur-
ation that contains a premature translation stop codon. fem is
apparently an orthologue of the tra genes [12].

The housefly, M. domestica, exhibits a number of different
sex determination systems [8, 29, 35, 36] that co-exist in this
species. There is a classical system (Fig. 1B) in which a domi-
nant male-determiner on the Y chromosome provides a mas-
culinising activity (males are X/M-Y and females X/X; the
molecular nature of M has yet to be identified). Other systems
can have the dominant male-determiners M on any of the five
autosomal chromosomes, and even on the X chromosome.
Furthermore, a dominant female-determiner (FD) exists in this
species that establishes feminising activity. Females are FDM/
FM and males are FM/FM (Fig. 1C). FD, the dominant female-
determiner, is an allelic variant of the Md-tra gene [15] that
produces female tra mRNAs and active Tra protein, even in the
presence of the male-determiner M. In the absence of the FD

allele, the male-determiner M ensures male-specific splicing of
other Md-tra alleles and, consequently, the absence of active
Md-Tra protein in males.

The medfly, C. capitata, also possesses a dominant male-
determiner M on the Y chromosome that is responsible for
masculinising activity [13, 17, 37] (Fig. 1D). The molecular
nature of M is yet to be identified. In the presence of M, male
Cc-tra mRNAs, but not Tra proteins, are produced. In the
absence of M, maternally-derived Tra proteins direct splicing
into productive female Cc-tra mRNAs.

These results imply that sex determination mechanisms in
insects are used in two ways (Fig. 2); sex determination mech-
anisms in the zygote produce either feminising activities
(D. melanogaster/A. mellifera) that switch tra genes ON, or they
generate masculinising activities (C. capitata and M. domestica)
that switch tra genes OFF. In the absence of these signals the
pre-zygotic state of tra (‘default’ OFF or ON) is executed, result-
ing in male (D. melanogaster/A. mellifera), or female
(C. capitata and M. domestica) development. tra gene regula-
tion in N. vitripennis apparently follows this latter rule [22].

How do tra genes implement female and male develop-
ment? Tra proteins are members of SR-type splice regulators
that control female splicing of the dsx gene (Fig. 1). In the
absence of Tra proteins, male dsx mRNAs are produced. This
regulatory principle is shared among dipteran and hymenop-
teran insects [12–22, 38, 39] implying that this is an ancestral
principle of sexual regulation in holometabolous insects (hyme-
nopteran insects are at the base of holometabolous insects
[40]). tra gene regulation involves a positive feedback loop
in females that generates even more Tra proteins and, thereby,
a stable female state throughout development [13–15] (Fig. 1).
The feedback activity of tra, and its’ role in germ cell differen-
tiation, have been co-opted in D. melanogaster by the Sxl gene,
the next upstream component [1, 41, 42] (Fig. 1), suggesting that
the Drosophila model system is derived in these respects.

Sex-specific splicing of the dsx gene has been identified in
other phylogenetic lineages, including the lepidopteran
insects [16, 17, 43–51]. The sex-specific, spliced dsx transcripts
encode transcription factors of the DM type that have an
atypical zinc-finger domain. The proteins differ in females
and males at their C-terminal ends [1], which control tran-
scription of target genes differently [52]. The role of
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dsx in sexual differentiation has been dem-
onstrated in D. melanogaster [52–54],
M. domestica [16] and the lepidopteran
Bombyx mori [55], indicative of an ancestral
role in integrating sexual differentiation
within the general developmental program
[56–63].

tra genes in insects may also regulate
the fruitless (fru) genes that encode a BTP
zinc-finger transcription factor sex-specifi-
cally [64]. fru specifies sexual orientation
and courtship behaviour in Drosophila by
regulating differentiation processes in the
nervous system [64, 65], together with Dsx
protein [66]. Consistent with an ancestral
role in insect sex development, fru sex-
specific splice products have been detected
in the mosquito Anopheles gambiae [67],
C. capitata [17] and the hymenopteran wasp
N. vitripennis [68].

Evolutionary origin of novel
sex determination
mechanisms

Functional and evolutionary analyses of sex
determination genes (Fig. 1A,C,E) has
revealed that small-scale mutational
changes in the nucleotide sequence from
existing and from duplicated copies of
genes can generate novel sex determination
mechanisms (Fig. 3).

Figure 1. Sex determination in insect model species, with their phylogenetic relationships
representing �300 million years of evolution. The fruit fly D. melanogaster, the housefly
M. domestica, the medfly Ceratis capitata and the honeybee Apis mellifera share a com-
mon pathway (indicated by a grey box) composed of the transformer (tra) gene and its
downstream target doublesex (dsx). Female spliced tra transcripts (traF) give rise to Tra
proteins that direct splicing of dsxF mRNAs, production of DsxF proteins and female
development. When tra is spliced into the male variant, no Tra proteins are produced.
This results in splicing of male dsxM mRNAs, DsxM proteins and male development.
A: Sex in the honeybee (A. mellifera) is determined by the heterozygosity or homo-/hemi-
zygosity of the csd gene. In females, different Csd proteins, derived from a heterozygous
csd gene, direct the processing of female fem mRNAs (femF) [14]. The fem gene is appa-
rently an orthologue of the tra gene [12]). Fem protein regulates female splicing of dsx,
but also self-sustains the female splicing of fem. In males, inactive Csd proteins that are
derived from the same alleles (homo- or hemizygous csd genes) result in a default splicing
of fem (femM). (B and C) Models of two alternative sex determination systems that co-
exist in M. domestica populations [15, 29]. B: Sex is determined by the absence/pres-
ence of an unidentified male-determiner M. In the absence of M, maternally-derived Md-
tra gene products establish an auto-regulative loop in females in which Md-Tra protein
mediates the production of more female Md-tra mRNA. Presence of M impairs this tra
auto-regulatory loop and also mediates the splicing of male Md-tra mRNAs. C: Sex in M.
domestica can also be determined by a female determiner. Presence/absence of a tra
allele, Md-traD(¼FD), determines sexual fate. In females, the presence of Md-traD leads to
female splice products and Md-Tra protein, even in the presence of the male-determiner
M [15]. In males, the male-determiner M mediates male Md-traM mRNAs in the absence
of the Md-traD allele. D: Sex in C. capitata [13, 17] is determined by presence/absence of
a, thus far, unidentified male-determiner M. In the absence of M, maternally-derived Cc-
tra gene products appear to establish a Cc-tra auto-regulative loop [13]. Presence of M
mediates the splicing of male Cc-tra transcripts (traM). E: Sex in D. melanogaster is deter-
mined by the dose of X chromosomes [1, 28]. Double doses of X in females activate the
Sxl gene and expression of Sxl proteins. Sxl proteins direct splicing of female traF mRNAs
that give rise to functional proteins. Sxl proteins also establish an auto-regulatory feed-
back loop by directing splicing of productive female SxlF mRNAs, which maintain the
female state throughout development. In addition, there is an additional feedback activity
in which Tra proteins stimulate Sxl positive auto-regulation [98]. In males, the single dose
of X chromosomes does not direct early Sxl protein expression. As a consequence the
downstream regulatory decisions do not occur and male dsxM is produced. F: The evol-
utionary relationship of the species used in the comparison with their approximate time
scale of divergence [40, 99].
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The evolutionary origin of the X dosage mechanism in
D. melanogaster is associated with the evolutionary rise of
the Sxl gene. The Sxl gene encodes an RNA-binding protein
that originated in the dipteran lineage by gene duplication
from a copy of the ancestral CG3056 gene [69] (Fig. 3A). The
regulatory relationship of Sxl to the sex determination cascade
arose through the evolution of Sxl protein-binding sites (poly-
Uridine tracts between five and eight nucleotides in length) in
the tra gene. Signalling of the double dose of X chromosomes
by transcription factors (e.g. transcription factors runt, sisA,
sisB) has apparently evolved through changes in the cis regu-
latory control of Sxl transcription.

The complementary sex determination gene in honeybees
(Apis) evolved through gene duplication of the ancestral copy
of the fem/tra gene within the last 60 million years [12]
(Fig. 3B). The evolutionary rise of csd was accompanied by
the insertion of a novel hyper-variable region that consists of
asparagine/tyrosine-enriched repeats [70, 71] and by single
nucleotide replacement changes that produced a novel
coiled-coil motif [12]. The hyper-variable region is thought to
play a role in the recognition process of allelic differences (csd
alleles are only active in the heterozygous state), whereas the
putative coiled-coil domain appears to encode allelic protein-
binding properties (Otte and Beye, unpublished results).

The novel, dominant female-determiner FD(¼ MdtraD)
evolved in the housefly, M. domestica, from multiple small
deletions and insertions in intron sequences of the tra gene
[15] (Fig. 3C). The Md-traD allele is constitutively spliced in the
productive female mode in the presence of a male-determiner
M (Fig. 1C). Md-traD is a natural variant of the tra gene in
housefly populations [29], suggesting that this mechanism
originated recently.

These molecular analyses reveal how
nucleotide changes in duplicated copies
of genes and allelic variants can produce
new sex determination genes and diverse
mechanisms. Sex-determining variants,
however, initially originated from rare
mutational events in single individuals in
a population. To understand how and why
these initially rare variants became fixed in

populations and species, we have to apply population genetic
principles that account for the forces of evolutionary change.
Multiple fixation processes through evolutionary time have
generated the diversity of sex determination systems that we
see today in the insects.

Forces driving the divergence of sex
determination systems

Random genetic drift and directional (positive) selection are
the evolutionary forces that can initially drive rare sex-
determining variants throughout populations of any given
species. Directional selection enhances the probability of fix-
ation, given the random fluctuations of genetic variants in a
population caused by genetic drift. We do not review here the
body of theoretical work that has been done in the field of the
evolution of sex determination, but rather focus on the empir-
ical molecular evidence that has so far been documented.

Positive selection, driven by fitness gains in individual
population members, is a plausible source for the fixation
of new sex determination systems. For instance, phylogenetic
surveys in hymenopteran species suggest that the complemen-
tary sex determination mechanism has been replaced in some
highly inbreeding hymenopteran species (e.g. parasitic wasps)
[22, 32, 72]. Complementary sex determination under inbreed-
ing results in large numbers of diploid males that cannot
reproduce (only haploid males are fertile); suggestive of an
evolutionary advantage for alternative sex determination
mechanisms in this case.

Remarkably, once new sex determination mechanisms
have evolved, nature does not stop generating new sex

Figure 2. The regulatory principle underlying insect sex determination mechanisms.
Species-specific, sex determination systems produce either a feminising or a masculinsing
activity in the zygote to determine the two sexes in the proper proportions. In the absence
of this activity, the pre-determined tra activity in the pre-zygote produces the alternative
sex. A: Feminising activity in D. melanogaster and A. mellifera switches the tra gene from
the pre-zygotic OFF (non-active) into the ON (active) state. B: Masculinising activity in
C. capitata and M. domestica switches the tra gene from the pre-zygotic ON to the OFF
state.
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determination genes. An ongoing divergence process can be
observed in several species in which alternative sex determi-
nation systems co-exist [9, 10, 15] and in lineages in which a
sex determiner gene has been replaced, but not the underlying
mechanism [11, 12]. Recurrent, directional selection regimes
that can continuously drive sex determination systems to
diverge have been proposed through several hypotheses:
adjustment of sex ratios, intra-locus sexual conflict, the
degeneration of sex determiners, sex ratio drive [6, 73–78]
and sexual selection [79–81].

The adjustment of the sex ratio hypothesis states that the
rise of new sex determiners can be selectively advantageous in
sub-divided or inbreeding populations or when male and
female fitness are affected differently by environmental factors
[73, 74], because this will allow adjustment for the optimal sex
ratio. The intralocus sexual conflict hypothesis argues that a
newly evolved dominant male- or female-determiner will
increase in frequency when it is closely linked to a gene with
beneficial effects in the sex this gene determines [75, 76]. The
degeneration hypothesis states that the cessation or reduction
of meiotic recombination at primary, sex-determining loci
results in a gradual loss of the efficiency of selection (for
instance, the efficient removal of deleterious mutations in a
population), resulting in an evolutionary degeneration of a
sex determiner gene [6, 12, 82, 83]. A malfunction in sex

determination favours directional selection
of an alternative, novel sex determiner. The
degeneration hypothesis implies an evol-
utionary paradox: although meiotic recom-
bination and the mixing of genetic material
require two sexes, the genes that establish
them may lack the evolutionary advantage
of sexual reproduction. The sex ratio drive
hypothesis suggests that X-linked, meiotic
drive factors increase in frequency by induc-
ing the loss of Y chromosome-containing
sperm [77, 78]. There is, thus far, no direct
evidence that any one of these directional
selection scenarios favoured the rise of nov-
el, sex determination systems. These hy-
potheses are also difficult to test, as it is
not known whether fitness gains or losses

currently observable arise from novel sex determiner genes
themselves, or are associated with other, secondary effects (for
instance, suppression of recombination around the sex deter-
mination gene or accumulation of sex-specific beneficial
alleles) [84].

The function of sex determination hierarchies (Fig. 1) is
inconsistent with the view that sex determination systems
evolve because of sexual selection. The sex determination
signals of M. domestica, C. capitata and A. mellifera all
regulate tra genes that control sexual development in its
entirety (Fig. 1). They do not specify a particular set of
sexually-dimorphic traits on which sexual selection can
operate.

There are also examples in which the evolutionary rise of a
new sex determination system is inconsistent with the pre-
conditions of any of the directional selection hypotheses.
Multiple male-determiners, for instance, that co-exist in the
dipteran insects M. domestica and M. scalaris [10, 35, 85],
cannot be used to adjust sex ratios, nor do different male-
determiners promote sexual conflict. It is not plausible that
evolutionary degeneration of a preceding sex determiner (i.e.
through the accumulation of deleterious mutations) would
directionally select for multiple male sex determiners.
Fitness differences of M. domestica populations that either
have an autosomal M or a Y-M sex determination mechanism

Figure 3. Mutational routes for the evolutionary origin of novel sex determination func-
tions. A: The origin of the Sxl gene by gene duplication of CG3056 in dipteran insects
[69]. The encoding proteins are presented schematically. RRM 1 and RRM 2 denote the
two RNA-binding domains. B: The origin of the csd gene by tandem gene duplication of
the ancestral tra gene in the Apis lineage. The encoding proteins are presented schemati-
cally. The evolutionary rise of the csd gene was accompanied by the evolution of an
asparagine/tyrosine-enriched repeat that varies in number in the different allelic specific-
ities (denoted as HV: hyper-variable region) and with the origin of a putative coiled-coil
domain (denoted as CC) possibly involved in protein binding [70, 71]. Adaptive evolution
(directional selection) was involved in shaping the evolutionary rise of the csd gene [12].
The paralogous sister gene fem evolved under purifying selection, consistent with its
ancestral function [100]. RS denotes the arginine/serine-enriched (RS) domain and PR
denotes the proline-rich domain. C: The evolutionary origin of the Md-traD allele from the
ancestral Md-tra gene in M. domestica populations [15]. The Md-tra genome structure is
presented schematically. Blue triangles denote nucleotide insertions and the green
triangles represent nucleotide deletions in the Md-traD allele that lost the ability to produce
the male splice variant traM in the presence of M.
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[86] can also be explained by secondary effects and genetic
differences associated with X/Y chromosomal backgrounds.

Another explanation for the evolutionary rise of alternative
male-determiners is genetic drift. A higher evolutionary origin
rate by mutation will increase the probability of fixation (see
[87] for a theoretical analysis of how genetic drift can drive
genetic pathway evolution). Multiple male-determiners (>4)
in M. domestica and M. scalaris populations could reflect the
increased mutation rate by which new repressing activities of
tra genes can evolve from the entire gene repertoire of the
genome. A repressing activity can be established at different
levels of tra gene regulation, suggesting a high rate of origin.
In contrast, female-determiners evolve more rarely (indeed,
only one female-determiner has been identified in M. domes-
tica, but none in M. scalaris) because it is less likely that a new
function arises by mutation that properly controls tra pre-
mRNA splicing and protein production.

The null-hypothesis of genetic drift has been rejected in the
case of the csd gene. An excess of non-synonymous over syn-
onymous, neutral nucleotide changes has been identified
during the evolutionary origin of csd (Fig. 3B) [12]. More amino
acid-encoding nucleotides have been replaced directly after csd
origin than neutral changes that solely became fixed by random
genetic drift. Intriguingly, some of these new amino acids form a
putative coiled-coil domain that appears to alter binding prop-
erties between Csd allelic proteins (Otte and Beye, unpublished
results). The cause of directional selection during the evolution-
ary rise of csd is not understood and cannot be explained by an
adjustment of sex ratios or an intra-locus sexual conflict.
Complementary sex determination systems allow control over
sex ratios (males derive from unfertilised eggs, females from
fertilised eggs) and are not targets of intra-locus sexual conflict
and sex ratio drive (as they are inherited in both sexes).
Complementary sex determination systems can reside in
genomic regions of substantially-reduced meiotic recombina-
tion [70, 88], implying that evolutionary degeneration may
operate. Malfunction of the preceding complementary sex deter-
miner could have selected for a new sex determiner; csd.

Fruitful routes of future research

There is a need to characterise more sex determination genes.
Discovering other regulatory mechanisms and their routes of
evolutionary origin will broaden our understanding of how
and why these key controls of developmental processes have
evolved. Characterisation of sex determiners will be greatly
facilitated by next-generation sequencing technologies,
especially for species in which sex-determining factors can
be linked to short genomic regions of otherwise freely-recom-
bining chromosomes (e.g. neo Y chromosomes) [9, 10, 31, 35,
85, 89]. Sequencing DNA from pools of male and female
progenies of a single cross will identify sex-specific nucleotide
differences. These sex-specific differences will identify candi-
date genes. The function of these genes can be further tested
using RNAi-induced knock-down studies.

Nucleotide sequences of novel sex determiners will allow
us to trace the evolutionary history [12, 15, 69] and the evol-
utionary forces that shaped their origin [12]. By applying
population genetic tests on nucleotide sequences (i.e. dN/

dS ratio, MacDonald Kreitman test, Tajima’s D, among others
[90]), we can directly identify evidence for the cause of evol-
utionary change [12] in the responsible genes. This powerful
approach has been widely neglected in evolutionary devel-
opmental biology.

An open question is when did the key sex-determining
functions of tra (Figs. 1, 3) evolve? tra genes apparently have
no sex-determining function outside of insects (see the crus-
tacean case Daphnia magna [91]), but it is not known whether
hemimetabolous insects use these tra key functions. The fast-
evolving tra genes may be identified by a conserved 30 amino
acid motif that has been identified in non-Drosophila species
[12, 13, 15, 92, 93]. tra has not been identified in the sequenced
B. mori genome [94, 95], which may reflect a lack of sufficient
conservation, evolutionary loss, or a lack of corresponding
sequence information.

What is widely unknown is how sexual dimorphic traits
can evolve so rapidly by changes in the underlying develop-
mental program. Reproductive structures, behaviours and
secondary sexual characteristics are some of the most
variable and changeable features among insects; some of
which evolve through sexual selection (Darwin 1871).
Morphological changes may evolve by the regulatory control
of dsx target genes [by either modification, loss or novel origin
of cis regulatory elements (CREs) [52]] or by recruiting other
genes (i.e. transcription factors) to the sex-determining proc-
ess. Investigation into what aspects of morphology dsx con-
trols in different species could give insights into whether dsx is
a conserved key determinant of sexual dimorphic differen-
tiation. Transgenic studies have shown that at least some
aspects of dsx sexual differentiation are conserved in the
dipteran insect M. domestica [16] and the lepidopteran
B. mori [55, 96]. Expression of male and female Dsx proteins,
with the help of transgenic tools in a dsx null mutant back-
ground, would facilitate study into which aspects of sexual
differentiation are controlled by dsx (RNAi-induced knock-
down of dsx by injection procedures have, thus far, failed
in several insects) and whether other key components in non-
Drosophila species have yet to be identified. The evolution of
abdominal pigmentation and pheromone production in some
Drosophila species have been shown to be caused by small-
scale evolutionary changes of CREs of Dsx protein target genes
[52, 63, 97]. A way to identify putative shared and evolved dsx
target genes is to characterise binding sites of Dsx proteins in
informative insect species by chromatin immuno-precipitation
(ChiP) and next-generation sequencing.

Conclusion

Recent studies in insects have shed some light on how and why
sex determination systems evolve [1, 12, 15, 69]. Gain-of-func-
tion alleles of tra, the double dose of X-linked transcription
factors that activate Sxl, or Csd proteins derived from a hetero-
zygous csd gene are the molecular signals of diverse sex
determination mechanisms, such as a dominant female-
determining system, an X:A ratio and a complementary sex
determination system. These organism-specific signals all share
transduction of their activities to common tra genes; the
upstream component of an ancestral pathway tra->dsx in
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holometabolous insects. Diverse signals utilise two regulatory
principles to determine the two sexes (Fig. 2): they either
produce feminising activities that switch tra genes ON, or they
produce masculinising activities that switch tra genes OFF. In
the absence of these activities, the pre-zygotic activity of tra
(‘default state’ either ON or OFF) executes male or female
development. tra genes in most studied insects maintain the
sexually-determined state epigenetically through a positive
regulatory feedback loop of pre-mRNA splicing [13].

Diverse mechanisms can evolve through small-scale
nucleotide changes in regulatory and coding regions from
existing or from duplicated genes. From the ease and rate
that novel sex determiners arise by such changes [12], even
within a species [10, 15, 35, 85], we suggest that non-adaptive
forces (mutation and genetic drift) are also possible sources of
novel sex determination systems. We suggest that genetic drift
should serve as a null hypothesis in future work.

An excess of non-synonymous changes over synonymous,
neutral changes [12] in the csd gene of honeybees shows that
directional selection can enhance the evolutionary rise of
novel sex determiner genes [12]. Evolutionary degeneration,
due to lack of recombination of the preceding complementary
sex determiner gene, may have caused such directional
selection [6, 12, 82, 83].

By applying molecular evolutionary and genetic
approaches, we are just beginning to understand both the
evolutionary routes and the molecular mechanisms that have
generated the enormous diversity of sex determination mech-
anisms. These insights will greatly broaden our knowledge of
how novel control mechanisms and regulatory principles
evolve in developmental processes.
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